Electromigration Characteristic of SnAg3.0Cu0.5 Flip Chip Interconnection

نویسندگان

  • Chien Chen Lee
  • Chang Chun Lee
  • Chien Chia Chiu
  • Kuo Ming Chen
  • Frank Kuo
  • Ning Chiang
چکیده

1 Ph.D. Candidate 2 Corresponding Author, Professor Abstract Electromigration is a reliability concern of microelectronic interconnections, especially for flip chip solder bump with high current density applied. This study shows that with the line-to-bump geometry in a flip chip solder joint, the current density changes significantly between the Al trace and the bump, while the current crowding effect generates more heat between them. This large Joule heating under high current density can enhance the migration of Sn atoms at the current entrance of the solder bump, and cause the void formation at the entrance point. The present study finds two kinds of electromigration failure modes at the cathode/chip side of the solder bump: the pancake-like and the cotton-like void. The experimental finding shows that the effects of polarity and tilting are key factors to observe in the electromigration behavior of SnAg3.0Cu0.5 solder bumps. Consequently, this study has designed a three-dimensional numerical model and a corresponding test vehicle to verify the numerical finding. The maximum current density is simulated through the finite element method (FEM) to provide a better understanding of local heat and current crowding. This study finds that the current crowding ratio is reduced linearly while the void formation is increased. Furthermore, it is concluded that there is a linear relationship between the growth of the intermetallic compound (IMC) layer and the applied current density at the anode/substrate side.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of three-dimensional current and temperature distributions on void formation and propagation in flip-chip solder joints during electromigration

Articles you may be interested in Influence of Cu column under-bump-metallizations on current crowding and Joule heating effects of electromigration in flip-chip solder joints Effect of void propagation on bump resistance due to electromigration in flip-chip solder joints using Kelvin structure Appl. Investigation of void nucleation and propagation during electromigration of flip-chip solder jo...

متن کامل

Electromigration in Solder Joints and Solder Lines

Au (0.05 μm) 69.4 μm Electromigration may affect the reliability of flip-chip solder joints. Eutectic solder is a two-phase alloy, so its electromigration behavior is different from that in aluminum or copper interconnects. In addition, a flipchip solder joint has a built-in currentcrowding configuration to enhance electromigration failure. To better understand electromigration in SnPb and lead...

متن کامل

Mechanism of electromigration-induced failure in flip-chip solder joints with a 10-μm-thick Cu under-bump metallization

The electromigration-induced failure in flip-chip eutectic SnPb solder joints with a 10m-thick Cu under-bump metallization (UBM) was studied without the effect of current crowding in the solder region. The current crowding occurred inside the UBM instead of in the solder joint at the current density of 3.0 × 10 A/cm because of the spreading of current in the very thick Cu UBM. In these joints, ...

متن کامل

Failure Modes of Flip Chip Solder Joints Under High Electric Current Density

The failure modes of flip chip solder joints under high electrical current density are studied experimentally. Three different failure modes are reported. Only one of the failure modes is caused by the combined effect of electromigration and thermomigration, where void nucleation and growth contribute to the ultimate failure of the module. The Ni under bump metallization–solder joint interface ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006